If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+20x-8000=0
a = 1; b = 20; c = -8000;
Δ = b2-4ac
Δ = 202-4·1·(-8000)
Δ = 32400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{32400}=180$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-180}{2*1}=\frac{-200}{2} =-100 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+180}{2*1}=\frac{160}{2} =80 $
| -7s-8-9=26 | | 11.8-3a=-2.9 | | x+250=2800 | | h=-3.5=9 | | π6-w=4π | | 4c+9c=35 | | (2x/2+500/2)=2800 | | 12/x+1=7 | | -11+x/2=-5 | | 6v-4-3v=33 | | 2.1(y/2.1+0.84/2.1)-0.4=y | | 7/5=p+74 | | 27=6d-5d | | 13n−6=5 | | -10+4x=-114 | | -5x+2=14-5x | | 6+4x−13=−3x+5x+4 | | 2x+500/2=2800/2 | | 1-8x-8x=-8x-15 | | 3*x+60=2400/x | | 2x+250=1400 | | 5(4y-9)=-31+8y | | p^2-2000p+350000=0 | | 2x+250=2800 | | -14-3y=-7 | | w+3/5=3/16 | | −15=5−4x | | 3/2=z/15 | | 1/2(2x+500)=2800 | | 30=6x=6x | | 2x+500=2800+1/2x | | 2x/2+500=2800 |